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Abstract. We present the first numerical application of a method that we have recently proposed to solve
the Non Perturbative Renormalization Group equations and obtain the n-point functions for arbitrary
external momenta. This method leads to flow equations for the n-point functions which are also differential
equations with respect to a constant background field. This makes them, a priori, difficult to solve. However,
we demonstrate in this paper that, within a simple approximation which turns out to be quite accurate,
the solution of these flow equations is not more complicated than that of the flow equations obtained
in the derivative expansion. Thus, with a numerical effort comparable to that involved in the derivative
expansion, we can get the full momentum dependence of the n-point functions. The method is applied, in
its leading order, to the calculation of the self-energy in a 3-dimensional scalar field theory, at criticality.
Accurate results are obtained over the entire range of momenta.

PACS. 05.10.Cc Renormalization group methods – 11.15.Tk Other nonperturbative techniques

1 Introduction

The non perturbative renormalization group (NPRG) [1–
5] stands out as a very promising formalism to address
non perturbative problems, i.e., problems in which the ab-
sence of a small parameter prevents one to build a solution
in terms of a systematic expansion. It leads to exact flow
equations which are difficult to solve in general, but which
offer the possibility for new approximation schemes. When
only correlation functions at small momenta are needed,
as is the case for instance in the calculation of critical
exponents, a general approximation method to solve the
infinite hierarchy of the NPRG equations has been devel-
opped [5–7]. This method, which can be systematically
improved, is based on a derivative expansion of the ef-
fective action. It has been applied successfully to a vari-
ety of physical problems, in condensed matter, particle or
nuclear physics (for reviews, see e.g. [6, 7]). However, in
many situations, this is not enough: in order to calculate
the quantities of physical interest, the knowledge of the
full momentum dependence of the correlation functions is
mandatory. Many efforts to get this information from the
flow equations, involve truncations of various kinds [8],
following an early suggestion by Weinberg [9] (see how-
ever [10, 11]).

The present paper explores the applicability of the
strategy that we proposed recently in [14], following our
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previous works [19, 20] in which we presented a scheme
to obtain the momentum dependence of n-point functions
from the flow equations. The strategy put forward in [14]
is based on the fact that the internal momentum q in the
integrals that determine the flow of the n-point functions
is bounded by the regulator introduced by the NPRG.
Since this regulator also guarantees that the vertex func-
tions are smooth functions of the momenta, these can be
expanded in powers of q2/κ2, κ being the cut-off scale in
the regulator. The “leading order” (LO) of the approxi-
mation scheme proposed in [14] simply consists in keeping
the lowest order of this expansion, i.e., in setting q = 0
in the vertices. Doing so, and working in a constant ex-
ternal field, it is possible to relate to each other the var-
ious n-point functions that appear in a given flow equa-
tion through derivatives with respect to the external field,
thereby closing the hierarchy of equations.

In [14] we showed that the method reproduces per-
turbative results, at any desired order. Furthermore, we
also showed that the LO is exact in the large N limit of
the O(N) scalar model. Finally, one expects the method to
provide results as good as those of the derivative expansion
at small momenta. It is beyond the scope of the present
paper to address the general issue of the convergence of
our approximation scheme. The convergence of the deriva-
tive expansion remains, to a large extent, an open problem
which has been addressed, for instance, in [15] or, more
recently, in [18]. The quality of the derivative expansion
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can however be gauged from numerous applications in var-
ious contexts (see e.g. [12, 16, 17, 24], and also [6, 7]). Its
convergence seems to be better when the anomalous di-
mension is small, which is the case for the scalar model
studied in this paper.

The price to pay for relating the n-point functions in
the flow equations through derivatives with respect to a
uniform background field is that the flow equations be-
come differential equations with respect to this uniform
background field, with integral kernels that involve the
solution itself. These integro-differential equations are a
priori difficult to solve. The aim of this paper is to demon-
strate that they can indeed be solved, with a numerical ef-
fort comparable to that involved in solving the flow equa-
tions that result from the derivative expansion, and to
present a first application to the study of the 2-point cor-
relation function of the scalar model, in the LO of the
approximation scheme.

The outline of the paper is as follows. In Section 2
we briefly recall some basic features of the NPRG and
the essence of our approximation scheme in the case of a
scalar field theory. In Section 3 we analyze the structure
of the flow equation for the 2-point correlation function
and describe the strategy that we used to solve it. In Sec-
tion 4 we present numerical results for the self-energy of
the scalar field, at criticality and in d = 3. The appendices
gather technical material.

2 The method

We consider a scalar field theory with the classical action

S =
∫

ddx

{
1
2

(∂µϕ(x))2 +
r

2
ϕ2(x) +

u

4!
ϕ4(x)

}
. (1)

The NPRG constructs a family of effective actions, Γκ[φ]
(with φ the expectation value of the field in the presence of
external sources), in which the magnitude of long wave-
length fluctuations are controlled by an infrared regula-
tor depending on a continuous parameter κ. The effective
action Γκ[φ] interpolates between the classical action ob-
tained for κ = Λ (with Λ the microscopic scale at which
fluctuations are essentially suppressed), and the full effec-
tive action obtained when κ → 0, i.e., when all fluctua-
tions are taken into account (see e.g. [7]). It is understood
that the values of the parameters r and u of the classical
action (1), as well as the field normalisation, are fixed at
the microscopic scale Λ. One can write for Γκ[φ] an exact
flow equation [3–5]:

∂κΓκ[φ] =
1
2

∫
ddq

(2π)d
(∂κRκ(q))

[
Γ (2)

κ + Rκ

]−1

q,−q
, (2)

where Γ
(2)
κ is the second derivative of Γκ with respect to φ,

and Rκ denotes a family of “cut-off functions” depending
on κ. There is a large freedom in the choice of Rκ(q), abun-
dantly discussed in the literature [21–24]. To be specific,
in the present paper, we shall use for Rκ(q) the following

function [23]

Rκ(q) = Zκ(κ2 − q2) Θ(κ2 − q2), (3)

where Zκ is a function of κ specified in the next section
(see Eq. (18)).

By deriving equation (2) with respect to φ, and then
letting the field be constant, one gets the flow equation
for the n-point functions Γ (n) in a constant background
field φ. More precisely, taking into account momentum
conservation, one defines:

(2π)d δ(d) (p1 + · · · + pn) Γ (n)
κ (p1, . . . , pn; φ) =∫

ddx1 . . .

∫
ddxnei

∑n
j=1 pjxj

δnΓκ

δφ(x1) . . . δφ(xn)

∣∣∣∣
φ(x)≡φ

.

(4)

Then, the equation for the 2-point function reads:

∂κΓ (2)
κ (p; φ) =∫

ddq

(2π)d
(∂κRκ(q))

{
Gκ(q; φ)Γ (3)

κ (p, q,−p− q; φ)

× Gκ(q + p; φ)Γ (3)
κ (−p, p + q,−q; φ)Gκ(q; φ)

− 1
2

Gκ(q; φ)Γ (4)
κ (p,−p, q,−q; φ)Gκ(q; φ)

}
, (5)

where
G−1

κ (q; φ) ≡ Γ (2)
κ (q; φ) + Rκ(q), (6)

and in equations (5) and (6) we have used the simplified
notation Γ

(2)
κ (q; φ) for Γ

(2)
κ (q,−q; φ), a notation that will

be used throughout.
In general, the flow equation for a given n-point func-

tion involves the m-point functions with m = n + 1 and
m = n + 2. Thus, the flow equations for the n-point func-
tions do not close, but constitute an infinite hierarchy of
coupled equations; this makes them difficult to solve.

In [14] we proposed a method to solve this infinite hier-
archy. It exploits the smoothness of the regularized n-point
functions at small momenta, and the fact that the loop
momentum q in the right hand side of the flow equations
(such as Eq. (2) or Eq. (5)) is limited to q <∼ κ by the pres-
ence of the regulator Rκ(q). The leading order (LO) of the
method presented in [14] thus consists in setting q = 0 in
the n-point functions in the r.h.s. of the flow equations,
for instance

Γ (n)
κ (p1, p2, ..., pn−1+q, pn−q)∼Γ (n)

κ (p1, p2, ...,pn−1,pn).
(7)

Once this approximation is made, some momenta in some
of the n-point functions vanish, and the corresponding
n-point functions can be obtained as the derivatives of
m-point functions (m < n) with respect to a constant
background field, thereby allowing us to close the hierar-
chy of equations.

Specifically, in equation (5) for the 2-point function,
the 3- and 4-point functions in the r.h.s. will contain re-
spectively one and two vanishing momenta after we set
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q = 0. These can be related to the following derivatives of
the 2-point function:

Γ (3)
κ (p,−p, 0; φ) =

∂Γ
(2)
κ (p; φ)
∂φ

,

Γ (4)
κ (p,−p, 0, 0; φ) =

∂2Γ
(2)
κ (p; φ)
∂φ2

. (8)

One then arrives at a closed equation for Γ
(2)
κ (p; ρ) (with

ρ ≡ φ2/2):

κ∂κΓ (2)
κ (p; ρ) = J

(3)
d (p; κ; ρ)

(
∂Γ

(2)
κ (p; ρ)
∂φ

)2

−1
2
I
(2)
d (κ; ρ)

∂2Γ
(2)
κ (p; ρ)
∂φ2

, (9)

where

J
(n)
d (p; κ; ρ) ≡∫

ddq

(2π)d
κ(∂κRκ(q))Gκ(p + q; ρ)G(n−1)

κ (q; ρ), (10)

and

I
(n)
d (κ; ρ) ≡

∫
ddq

(2π)d
κ(∂κRκ(q))Gn

κ(q; ρ)

= J
(n)
d (p = 0; κ; ρ). (11)

At this point we note that the n-point functions at zero
external momenta can all be considered as derivatives of a
single function, the effective potential Vκ(ρ). For instance,

Γ (2)
κ (p = 0; ρ) =

∂2Vκ

∂φ2
. (12)

The effective potential satisfies a flow equation which can
be deduced from that for the effective action, equation (2),
when restricted to constant fields. It reads

κ∂κVκ(ρ) =
1
2

∫
ddq

(2π)d
κ(∂κRκ(q))Gκ(q; ρ). (13)

The second derivative of this equation with respect to the
background field yields a flow equation for Γ

(2)
κ (p = 0; ρ).

Now, this equation does not coincide with equation (9) in
which we set p = 0: indeed, in contrast to equation (9),
the vertices in the equation deduced from equation (13)
keep their q-dependence (q being the loop momentum in
Eq. (13)). There is therefore an apparent inconsistency in
our approximation scheme, that is however easily resolved
by treating separately the zero momentum (p = 0) and the
non-zero momentum (p �= 0) sectors. In fact, in doing so,
we get more accuracy in the sector p = 0 than in the sector
p �= 0.

Let us then write:

Γ (2)
κ (p; ρ) = p2 +

∂2Vκ

∂φ2
+ Σκ(p; ρ), (14)

where

Σκ(p; ρ) ≡ Γ (2)
κ (p; ρ) − p2 − Γ (2)

κ (p = 0; ρ). (15)

We shall refer to Σκ(p; ρ) as the self-energy (although it
differs from the usual self-energy by the subtraction of
the momentum independent contribution Γ

(2)
κ (p = 0; ρ)).

By definition, Σκ(p = 0; ρ) = 0, and at criticality,
Γ

(2)
κ=0(p = 0; ρ) = 0. We then proceed with separate ap-

proximations in the two sectors with p = 0 and p �= 0.
In the sector p �= 0, it is Σκ(p; ρ), rather than Γ

(2)
κ (p; ρ)

which satisfies the approximate equation (9) (strictly
speaking, Eq. (9) to which one subtracts the same equa-
tion with p = 0):

κ∂κΣ(p; ρ) =

⎡
⎣J

(3)
d (p; κ; ρ)

(
∂Γ

(2)
κ (p; ρ)
∂φ

)2

−1
2
I
(2)
d (κ; ρ)

∂2Γ
(2)
κ (p; ρ)
∂φ2

]
− [p → 0]. (16)

Equation (16) is the flow equation for the momentum de-
pendent part of the 2-point function at LO of our ap-
proximation scheme. It is a partial differential equation
with respect to the two real variables, κ and ρ, with
the momentum p playing the role of a parameter. It
is to be integrated from κ = Λ, with initial condition
ΣΛ(p; ρ) = 0, to κ = 0 where it yields the physical self-
energy Σ(p; ρ) ≡ Σκ=0(p; ρ).

Equation (16) is to be solved together with the equa-
tion in the sector p = 0, i.e., with the equation for
the effective potential, with initial condition VΛ(ρ) =
rρ + (u/6)ρ2. In equation (13) for Vκ(ρ), we use the prop-
agator (14) in which Σκ(p; ρ) is solution of equation (16)
and Γ

(2)
κ (q = 0; ρ) is determined self-consistently from the

effective potential, using equation (12).
It is not difficult to verify that (in the perturbative

regime) this scheme has 2-loop accuracy for the effective
potential, and only one-loop accuracy for the self-energy.
Besides, in the low momentum region it is as accurate as
the derivative expansion at next-to-leading order (corre-
sponding to an effective action quadratic in the deriva-
tives, with a field dependent coefficient).

3 Analysis of the flow equation

There are two features of equation (16) that make it a pri-
ori difficult to solve. First, the two functions J

(3)
d (p; κ; ρ)

and I
(2)
d (κ; ρ), are functionals of the solution Γ

(2)
κ (p; ρ)

(see Eq. (6)). Second the different values of p are coupled
through the propagator Gκ(p + q) entering the calcula-
tion of J

(3)
d (p; κ; ρ). In principle, one should therefore solve

equation (16) self-consistently, and simultaneously for all
values of p. However, in this section, we shall show that it
is possible to make an accurate calculation of J

(3)
d (p; κ; ρ)

and I
(2)
d (κ; ρ) using approximate propagators. This yields
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an approximate version of equation (16) that can be solved
for each given value of p. The validity of this approxima-
tion will be checked in the next section.

Consider first the function I
(n)
d (κ; ρ), which does not

depend on p. The smoothness of the n-point functions and
the fact that q ≤ κ, suggest to perform in the propagators
of the right-hand-side of equation (11) an approximation
similar to that applied to the other n-point functions, i.e.,
set q = 0. However, in order to maintain the exact one-
loop properties of the flow equations, one cannot simply
set q = 0 in the propagators: rather, one needs to keep a
momentum dependence close to that of the free propaga-
tors. Thus, we shall use for the propagators entering the
calculation of I

(n)
d (κ; ρ) the following approximate form

G−1
κ (q; ρ) ≈ Zκq2 + Γ (2)

κ (q = 0; ρ) + Rκ(q), (17)

where

Zκ ≡ ∂Γ
(2)
κ

∂q2

∣∣∣∣∣
q=0,ρ=ρ0

. (18)

As well known [5], and will be verified in Appendix A, the
quantity ∂Γ (2)(q; ρ)/∂q2

∣∣
q=0

depends weakly on ρ. Ac-
cordingly, one expects Zκ to depend weakly on the value
chosen for ρ0. As will be seen in Appendix A, the choice
ρ0 = 0 is here the simplest. With the propagator (17),
and the function (3) for Rκ(q) one can calculate I

(n)
d (κ; ρ)

analytically:

I
(n)
d (κ; ρ) = 2Kd

κd+2−2n

Zn−1
κ

1
(1 + m̂2

κ(ρ))n

(
1 − ηκ

d + 2

)
.

(19)

In this expression,

ηκ ≡ −κ∂κ ln Zκ (20)

is the running anomalous dimension and

m̂2
κ(ρ) ≡ Γ

(2)
κ (q = 0; ρ)

κ2Zκ
, (21)

is a dimensionless, field-dependent, effective mass. The
constant Kd is a number resulting from angular integra-
tion, K−1

d ≡ d 2d−1 πd/2 Γ (d/2) (e.g., K3 = 1/(6π2)).
Notice that, for d > 2, I

(2)
d (κ; ρ) → 0 when κ → 0.

We shall calculate the function J
(3)
d (p, κ; ρ) in a simi-

lar way, arguing that in this calculation one can assume
p <∼ κ: the propagator Gκ(p+q; ρ) in equation (10) is small
as soon as p/κ is large, and one can indeed verify that
the function J

(3)
d (p; κ; ρ) vanishes approximately as κ2/p2

for large values of p/κ (see the explicit expressions (40)
and (42) given in Appendix B). Thus, in the region
where J

(3)
d (p; κ; ρ) has a significant value, one can use for

Gκ(p + q; ρ) an expression similar to (17), namely

G−1
κ (p + q; ρ) ≈ Zκ(p + q)2 + Γ (2)

κ (0; ρ) + Rκ(p + q).
(22)

One can then calculate the function J
(3)
d (p; κ; ρ) analyti-

cally (in d = 3). The resulting expression is more compli-
cated than that of I

(2)
d (κ; ρ), equation (19). It is given in

Appendix B (see also [20]). Observe that the regulator in
equation (3) is not analytic at q ∼ κ. This generates non
analyticities in J

(3)
d (p; κ; ρ); but these occur only in the

third derivative with respect to p, at p = 0 and at p = 2κ
(cf. the odd powers of p̄ in Eqs. (40–43)), and they play
no role at the present level of approximation.

With the approximations just discussed, I
(2)
d (κ; ρ) and

J
(3)
d (p; κ; ρ) depend only on quantities that enter the flow

equation at p = 0, namely m̂2
κ(ρ), Zκ and ηκ. As we discuss

in Appendix A, these quantities can be obtained from a
modified version of the Local Potential approximation [7]
that we call the LPA’. The strategy to solve equation (16)
consists then in two steps: one first solves the LPA’ to get
m̂2

κ(ρ), Zκ and ηκ; then, for each value of p, one solves
equation (16) with the kernels I

(2)
d (κ; ρ) and J

(3)
d (p; κ; ρ)

that are calculated with m̂2
κ(ρ), Zκ and ηκ determined

from the LPA’.

Note that, generally, the flow of Σ gets strongly sup-
pressed below some non vanishing value of κ. This can be
inferred from the properties of the functions I

(2)
3 (κ; ρ) and

J
(3)
3 (p; κ; ρ) discussed above, and it will be verified explic-

itly on the numerical results presented in the next section.
In fact, the flow of Σ receives two contributions: the first
involves the external momentum p �= 0 and is suppressed
when κ <∼ p (J (3)

3 (p; κ; ρ) vanishes rapidly when κ becomes
smaller than p); the other contribution is independent of
p and, at criticality, is suppressed for κ <∼ κc ∼ u/10 (see
Appendix A, and in particular Fig. 6). Accordingly, one
expects the flow to stop when κ reaches the smallest of κc

and p.

The function Γ
(2)
κ (p; ρ) exhibits a simple scaling be-

havior. Consider for simplicity the zero field case ρ = 0,
and the ratio

p2 + Γ
(2)
κ (0; ρ = 0) + Σκ(p; ρ = 0)

Γ
(2)
κ (0; ρ = 0)

= f
(p

κ
,
p

u

)
. (23)

At criticality, and in the scaling regime where p, κ � u,
we expect f to become independent of u, and therefore a
function of p/κ only. As will be shown in the next section,
the solution of equation (16) verifies this property. Note
that this scaling behavior is reproduced only when includ-
ing a renormalization factor Zκ whose flow is determined
consistently from that of ∂Σκ/∂p2 for p < κ, as obtained
from equation (16). This calculation of Zκ is explained in
Appendix A. We have tested the consequence of setting
Zκ = 1 in the propagators (17) and (22), corresponding
to the Local Potential approximation (as opposed to the
LPA’). Doing so does not alter the self-energy in any sig-
nificant way when p >∼ u, but in the IR regime, the scaling
behavior is only approximate.
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0
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5
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Σ κ(p
;ρ

=
0)

/u
2

p/u=2565
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0,001 0,01 0,1 1 10 100 1000
κ/p

0
0,

5
1

Σ κ(p
;ρ

=
0)

/Σ
κ=

0(p
;ρ

=
0) p/u=1.9 10

-2

p/u=4.2 10
-3

p/u=1. 10 
-3

p/u=2.8 10
-4

Fig. 1. Top: Σκ(p; ρ = 0)/u2 as a function of κ/u for various
values of p � u. The flow stops at κ <∼ κc ∼ u/10. Bottom:
Σκ(p;ρ = 0)/Σ(p = 0; ρ = 0) as a function of κ/p for various
values of p � u. The flow stops at κ <∼ p/10.

4 Numerical results and discussion

We now turn to the numerical solution of the flow equa-
tion for Σκ(p; ρ), at d = 3 and at criticality. Our goal is to
assess the quality of the approximation scheme, and there
are two aspects that we shall examine. First, since the
strategy described in the previous section provides only
an approximate solution to equation (16), we shall esti-
mate by how much this approximate solution differs from
the exact solution of this equation. Second, since equa-
tion (16) itself is only the LO approximation of the method
described in [14], we shall compare our results with known
ones concerning the self-energy of the scalar model at crit-
icality.

Let us start by considering general properties of the
flow, and verify in particular that it stops when κ is small
enough, i.e., before reaching the value κ = 0. Figure 1
displays the self-energy, Σκ(p; ρ = 0) as a function of
κ/u, for different values of p. Calculations are made for
u/Λ = 3.54 × 10−4 (this value is small enough to guar-
antee that the results are independent of Λ). The top
panel of Figure 1 shows the flow of Σκ(p; ρ = 0) for val-
ues of p in the UV regime, i.e., p � κc ∼ u/10; for all
the considered values of p the flow stops at κc. The bot-
tom panel of Figure 1 presents the flow of the self-energy
when p is in the IR regime, i.e., when p � κc. In this
case, we have divided Σκ(p; ρ = 0) by its physical value

0,0001 0,01 1 100 10000
p/u

1e
-0

6
0,

00
1

Σ(
p)

/u
2

Fig. 2. Σ(p)/u2, in d = 3, at criticality and zero external field,
as a function of p/u.

Σ(p; ρ = 0) ≡ Σκ=0(p; ρ = 0), in order to make it more
obvious that the flow only stops when κ <∼ p.

We now turn to Σ(p) ≡ Σκ=0(p; ρ = 0), the phys-
ical self-energy in vanishing external field, displayed in
Figure 2 as a function of p/u, and discuss its behav-
ior in the various momentum regions: p � u, p � u,
p ∼ κc ∼ u/10. We have checked that the curve in Fig-
ure 2, i.e., (1/u2)Σ(p/u), is “universal”, i.e., independent
of u and Λ, provided u/Λ is small enough.

In the perturbative regime (p � u), one expects
Σ(p) ≈ (u2/96π2) log(p/u). In Appendix C we show that
the analytical solution of equation (16) preserves this be-
havior, although the coefficient in front of the logarithm is
(u2/9π4), 8% larger (the LO approximation does not in-
clude all the 2-loop perturbative diagrams exactly). Our
approximate numerical solution reproduces this result.
As explained in [14], at the NLO of our approximation
scheme, which is beyond the scope of the present paper,
the contribution of the 2-loops diagrams would be exactly
included and the correct prefactor (u2/96π2) would be re-
covered.

In the IR region (p � u) we expect the self-energy to
behave as

p2 + Σ(p) = Ap2−η∗
, (24)

where η∗ is the anomalous dimension. By analyzing the
small momentum behavior o Σ(p), we get numerically
η∗ = 0.05218. An alternative way to determine η is to
extract it from the κ dependence of Zκ (see Eq. (20)). As
recalled in Appendix A, in the critical regime, i.e., when
κ <∼ κc, Zκ ∝ κ−η∗

, with η∗ = 0.05220 the fixed point
value of ηκ (see Fig. 6). It is also shown in Figure 6 in Ap-
pendix A that the quantity Γ

(2)
κ (p = 0; ρ = 0)/(κ2Zκ)

goes to a fixed point, which confirms the behavior of
Γ

(2)
κ (p = 0; ρ = 0) ∼ κ2−η expected in the scaling regime.

We have performed a more stringent test of scaling
by studying the function (p2 + Σκ(p))/(Zκp2). This func-
tion is displayed in Figure 3 as a function of p/κ. By
definition of Zκ (see Eq. (18)), when κ is kept fixed
and p → 0, this function goes to one. Furthermore, as
explained before, in the scaling regime p, κ � u, one
expects this function to depend on p/κ only, which is
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indeed well verified, as can be seen on the top panel of
Figure 3; it is only for values of p which are not small
enough (p/u = 10−2, corresponding to the dashed line)
that violation of this scaling start to become significant.
Moreover, as can be seen on the figure, p2 + Σκ(p) is well
approximated by Zκp2 for all p <∼ κ. In the bottom panel
of Figure 3, we have plotted the ratio (p2 + Σκ(p))/(Zκp2)
divided by (p/κ)−η∗

. Recall that when κ � p � κc,
one expects p2 + Σκ(p) ∼ p2−η∗

, while Zκ ∼ κ−η∗
when

κ <∼ κc. Therefore when 1 � p/κ � κc/κ, one expects
(p2 + Σκ(p))/(Zκp2) ∼ (p/κ)−η∗

, so that the quantity
which is plotted should be constant. As seen in the bot-
tom panel of Figure 3, this is indeed the case for the value
η∗ = 0.05219, which confirms the coherence of the whole
calculation.

Our estimate for the anomalous dimension, η∗ ≈ 0.052
is to be compared with the results η∗ = 0, η∗ = 0.044
and η∗ = 0.033 obtained with the derivative expan-
sion at LO, NLO and NNLO, respectively [5, 12, 24], and
η∗ = 0.0335 ± 0.0025 from the resummed 7 loop calcula-
tion of reference [28]. Note however that the values quoted
above do not correspond all to the same regulator, and in
general the results depend slightly on the choice of the reg-
ulator. The value η∗ = 0.044 obtained with the derivative
expansion at NLO results from an optimization within a
family of exponential regulators; if instead the optimiza-
tion is done within the family of θ-regulators considered

in [24], the result is 0.047; with the regulator of the the
present paper one gets η∗ = 0.05 (see [24] for a thorough
discussion of this point). We note finally that the value
of η∗ obtained here is slightly larger than that obtained
in [19] using a different version of the LPA’ than that used
here. In fact, the present version of the LPA’ is close to
the derivative expansion in next-to-leading order.

We turn now to the intermediate momentum region,
which we shall probe with a quantity which is very sensi-
tive to the cross-over between the two regimes just studied:

∆〈φ2〉 =
∫

d3p

(2π)3

(
1

p2 + Σ(p)
− 1

p2

)
. (25)

As shown for instance in [25], the integrand in equa-
tion (25) is peaked at p ∼ κc (in fact it takes significant
values only in the region 10−3 <∼ p/u <∼ 10). This quantity
has been much studied recently for a scalar model with
O(2) symmetry because it determines then the shift of the
critical temperature of the weakly repulsive Bose gas [29].
For the simple scalar model studied in this paper, lattice
calculations measure [30] ∆〈φ2〉/u = −(4.95±0.41)×10−4

while the “7 loop” resummed calculation of reference [31]
yields ∆〈φ2〉/u = −(4.86±0.45)×10−4. With the present
numerical solution, one gets ∆〈φ2〉/u = −5.45 × 10−4.
This is only slightly larger than the value ∆〈φ2〉/u =
−5.03× 10−4 obtained in the next-to-leading order of the
scheme presented in [19, 20].

We conclude that with the LO of the present approx-
imation scheme, we obtain an accurate description of the
self-energy in the entire range of momenta. Since we have
solved only approximately equation (16), it remains to
study by how much the solution that we have obtained
differs from the exact solution of equation (16). We have
already indications about the accuracy of the approxima-
tion both in the UV and in the IR. In the UV, we repro-
duce the expected result (which differs by 8% from the ex-
act 2-loop result). We also loose the 2-loop accuracy with
which the effective potential could be obtained in the LO
of our scheme, by using LPA’ propagators. In the IR, we
have already commented on the quality of the value that
one obtains for the anomalous dimension. As a further
test, we have recalculated I

(2)
3 (κ; ρ) and J

(3)
3 (p; κ; ρ) us-

ing, instead of the LPA’ propagators, the propagators (6)
in which Γ

(2)
κ (p; ρ) is the 2-point function that has been

obtained in this section by approximately solving equa-
tion (16).

In Figure 4 we plot the ratio of the function I
(2)
3 (κ; ρ̃)

(ρ̃ ∼ ρ/κ, see Eq. (32)) calculated with the propagator ob-
tained from the numerical integration of the flow equation
divided by the function given by equation (11). One can
see that the smaller the value of κ, the larger the differ-
ence, and that the main error is for values of ρ̃ around the
minimum ρ̃min of the effective potential (ρ̃min goes from
1.8 to 3 as κ runs from Λ to 0). Nevertheless, the difference
stabilizes for small enough κ and it never exceeds 4%. The
bottom panel of Figure 4 shows the comparison of the two
curves in the worst situation, i.e., for small values of κ, as
a function of ρ̃: the curves are hardly distinguishable.
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Fig. 4. Top: the ratio of the function I
(2)
3 (κ; ρ̃) calculated with

the obtained numerical propagator and with the approximate
LPA’ propagator (as explained in the text), as a function of

ρ̃, for different values of κ/u. Bottom: the function I
(2)
3 (κ; ρ̃)

as a function of ρ̃, for κ/u = 3 × 10−4, calculated with the
approximate propagator (dotted line) and with the obtained
numerical propagator (solid line).

The same analysis is repeated for J
(3)
3 . Again, it is only

for small values of κ that the two functions differs. In the
top panel of Figure 5 we display the ratio of the function
J

(3)
3 calculated respectively with the obtained (numera-

tor) and the approximate (denominator) propagators, for
κ/u = 3 × 10−4, for various values of ρ̃. The difference
can be large, but only in the region (p � κ) where the
function J

(3)
3 itself is very small. In the region where the

function is non negligeable, the difference between the two
calculations never exceeds 5%. As was the case for I

(2)
3 ,

the largest error occurs for values of ρ̃ near the minimum
of the potential. In the bottom panel of Figure 5, we plot
the two functions for the same values of κ and ρ̃ as in the
top panel: the difference between the two calculations of
J

(3)
3 is invisible on such a plot.

5 Conclusions and perspectives

We have demonstrated in this paper that the method pro-
posed in [14] allows for concrete numerical applications.
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Fig. 5. Top: the ratio of the function J
(3)
3 (p;κ; ρ̃) calcu-

lated with the obtained numerical propagator and with the
approximate propagators, as a function of p/κ, for κ/u =
3 × 10−4 and for different values of ρ̃. Bottom: the function

J(3)(p;κ; ρ̃)/J
(3)
3 (p = 0; κ; ρ̃) calculated with the obtained nu-

merical propagator compared to that calculated with the ap-
proximate propagators, as a function of p/κ, for κ/u = 3×10−4

and for different values of ρ̃.

We have calculated the self-energy of the scalar model,
at the LO of the approximation scheme, at criticality, at
zero external field, in d = 3, and have obtained accurate
results over the whole range of momenta. Already at this
level of approximation the results obtained compare well
with those of more elaborate techniques. Worth emphasiz-
ing is the fact that the scaling behavior of the self-energy
is accurately reproduced: not only do we get a reason-
able estimate of the anomalous dimension, but the entire
dependence of the self-energy on the momentum and the
cut-off follows accurately the expected scaling behavior.

In the present paper, whose main objective was to con-
firm the applicability of the method to a concrete calcu-
lation, we solved approximately the flow equation (16).
However, several tests suggest that this approximate so-
lution differs in fact very little from the complete solution
of (16). Of course, a definite statement concerning the er-
ror made in the present calculation can only come from
a comparison with the exact solution. This, we believe,
is within reach. Similarly, work is in progress to test the
convergence of the procedure by calculating the next-to-
leading order contribution.
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The method of reference [14] builds on our previous
works on the same subject [19, 20]. The results presented
in this paper indicate that it is both conceptually simpler,
and numerically more accurate, than the method which we
have developed in [19, 20]. It offers the possibility of appli-
cations to a variety of non-perturbative problems, where
the knowledge of the momentum dependence of n-point
functions is necessary. Even the approximate treatment
presented in this paper could constitute an interesting
starting point in situations where only a semi-quantitative
description would be valuable.

We would like to thank Hugues Chaté, Bertrand Delam-
otte and Diego Guerra for many fruitful discussions. Ramón
Méndez-Galain and Nicolás Wschebor are grateful for the hos-
pitality of the ECT* in Trento where part of this work has
been carried out.

Appendix A: The p = 0 sector

As discussed in the main text, our approximate solution of
equation (16) builds on the prior determination of quan-
tities that are independent of momentum. These are cal-
culated using a variant of the derivative expansion that
we describe in this appendix. The derivative expansion is
usually [7] formulated in terms of an ansatz for the run-
ning effective action Γκ[φ], including terms up to a given
number of derivatives of the field. Its leading order, the so-
called local potential approximation (LPA), assumes that
the effective action has the form:

Γ LPA
κ [φ] =

∫
ddx

{
1
2
∂µφa∂µφa + Vκ(ρ)

}
(26)

where the derivative term is simply the one appearing in
the classical action, and Vκ(ρ) is the effective potential. In
the next-to-leading order (NLO), one assumes [1]

Γ NLO
κ [φ] =

∫
ddx

{
Zκ(ρ)

2
∂µφa∂µφa + Vκ(ρ)

}
. (27)

An interesting improvement of the LPA, which we re-
fer to as the LPA’, is a simplified version of the NLO
that consists in ignoring the ρ-dependence of Zκ(ρ), i.e.,
in choosing Zκ = Zκ(ρ0) where ρ0 is a given value of
ρ, usually taken to be the running minimum of the po-
tential. In the LPA’ one solves simultaneously the flow
equations for both the effective potential Vκ(ρ) (a par-
tial differential equation in κ and ρ) and for Zκ. In this
approximation, the inverse propagator takes the form of
equation (17): G−1

κ (q2; φ) = Zκq2 + V ′′
κ (φ) + Rκ(q), with

V ′′
κ (φ) = d2Vκ/dφ2. The LPA’ allows for a non-trivial

anomalous dimension, which is determined from the cut-
off dependence of Zκ (see Eq. (20) and Ref. [1]).

The procedure followed in this paper to determine the
field renormalisation constant Zκ differs slightly from that
used in [19]. This is because, as explained in Section 3,
we need the calculation of Zκ to be consistent with the
approximate equation (16) for the 2-point function. This

is essential to get the proper scaling behavior of Γ
(2)
κ (p; ρ)

at small momenta. We set (cf. Eq. (18)):

Zκ(ρ) ≡ 1 +
∂Σκ(p; ρ)

∂p2

∣∣∣∣
p=0

, (28)

where Σκ(p; ρ) is defined in equation (15). The flow equa-
tion obeyed by Zκ(ρ) reads

κ∂κZκ(ρ) =
∂J

(3)
d (p2, ρ)
∂p2

∣∣∣∣∣
p=0

(
∂3V

∂φ3

)2

+ 2I
(3)
d (ρ)

∂3V

∂φ3

∂Zκ(ρ)
∂φ

− 1
2
I
(2)
d (ρ)

∂2Zκ(ρ)
∂φ2

,

(29)

which follows immediately from equation (16) for
Γ

(2)
κ (p; ρ). Knowing the solution of this equation we can

calculate ηκ from equations (20) and (18). At this point,
it is convenient to choose ρ0 = 0. Then the expression of
ηκ that one deduces from equation (29) simplifies into:

ηκ =
1
2
I
(2)
d (ρ = 0)

1
Zκ

∂2Zκ(ρ)
∂φ2

∣∣∣∣
ρ=0

. (30)

Since I
(2)
d (ρ = 0) depends explicitly on Zκ and ηκ (see

Eq. (19)), equation (30) is in fact a self-consistent equation
for ηκ.

The solution of the LPA’ is well documented in the
literature (see e.g. [7, 24]). In practice, we work with di-
mensionless quantities. We set:

vκ(ρ̃) ≡ K−1
d κ−dVκ(ρ), χ(ρ̃) ≡ Zκ(ρ)

Zκ
, (31)

with

ρ̃ ≡ K−1
d Zκ κ2−d ρ, (32)

and Kd is given after equation (21). We solve the equation
for the derivative of the potential with respect to ρ̃, i.e.,
wκ(ρ̃) ≡ ∂ρ̃vκ(ρ̃), rather than that for the effective poten-
tial itself. This reads (from now on we stick to d = 3):

κ∂κwκ =−(2−ηκ)wκ + (1 +ηκ)ρ̃w′
κ

−
(
1− ηκ

5

)( (N−1)w′
κ

(1 + wκ)2
+

3w′
κ + 2ρ̃w′′

κ

(1 + wκ + 2ρ̃w′
κ)2

)
,

(33)

where w′
κ = ∂ρ̃wκ(ρ̃), w′′

κ = ∂2
ρ̃wκ(ρ̃). Equation (33) is

solved starting from the initial condition at κ = Λ:

wκ(ρ̃, κ = Λ) = m̂2
Λ + ĝΛρ̃, (34)

where m̂Λ and ĝΛ are related to the parameters r and u
of the classical action (1) by

m̂2
Λ =

r

Λ2
, ĝΛ =

u

Λ

K3

3
, (35)
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Fig. 6. The dimensionless mass m̂2
κ(ρ̃ = 0) = ∂ρ̃vκ(ρ̃ = 0)

(top) and the anomalous dimension ηκ (bottom) as a function
of κ/u. These quantities were obtained by solving the LPA’
equations, with u/Λ = 3.54 × 10−4 and the parameter r ad-
justed to be at criticality.

and the parameter r is adjusted to be at criticality.
Together with equation (33), we solve the equation for
χκ(ρ̃ > 0), which reads

κ∂κχκ = ηκχκ + (1 + ηκ)ρ̃χ′
κ − 2ρ̃

(3w′
κ + 2ρ̃w′′

κ)2

(1 + wκ + 2ρ̃w′
κ)4

+8ρ̃χ′
κ(1 − ηκ

5
)

(3w′
κ + 2ρ̃w′′

κ)
(1 + wκ + 2ρ̃w′

κ)3

−(1 − ηκ

5
)

χ′
κ + 2ρ̃χ′′

κ

(1 + wκ + 2ρ̃w′
κ)2

, (36)

where χ′
κ = dχκ/dρ̃. The initial condition is χκ(ρ̃ = 0) = 1

for all κ, which follows from the definition of Zκ, equa-
tion (18). Finally, for ηκ we have simply:

ηκ =
χ′

κ(0)
(1 + wκ(0))2 + χ′

κ(0)/5
. (37)

For the sake of illustration, we present in Figure 6 the
LPA’ solutions for m̂2

κ(ρ̃ = 0) (defined in Eq. (21)) and
ηκ, as a function of κ/u. The calculations have been done
with u/Λ = 3.54 × 10−4, but the curves are independent
of this choice, provided u/Λ remains small. One can ver-
ify that the the crossover between the UV and IR regimes
occurs around κc ∼ u/10. The fixed point value of ηκ is
η∗ = ηκ→0 ≈ 0.05220, and that of m̂2

κ(ρ̃ = 0), –0.1608.
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Fig. 7. The dimensionless function χ(ρ̃) defined in eq. (31),
for various values of κ/u = 3× 10n, with n = 2 (circles), n = 1
(squares), n = 0 (diamonds), n = −1, · · · ,−5 from bottom to
top.
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Figure 7 illustrates the ρ-dependence of the renormaliza-
tion factor Zκ(ρ) (see Eq. (31)). This dependence is com-
pletely negligible when κ >∼ κc ∼ u/10, and never exceeds
8%.

Appendix B: The functions I
(2)
3 (κ; ρ)

and J
(3)
3 (p; κ; ρ)

In this appendix we provide details about the functions
I
(2)
3 (κ; ρ) and J

(3)
3 (p; κ; ρ) calculated with the propaga-

tors (17) and (22) respectively.
Consider first the function I

(2)
3 (κ; ρ), defined in equa-

tion (11), and whose explicit expression is given in equa-
tion (19). The variation of I

(2)
3 (κ; ρ) with κ is dominated

by the explicit linear κ dependence and the κ-dependence
of the renormalization factor Zκ. The function

ZκI
(2)
3 (κ; ρ)
κ

= 2K3
1

(1 + m̂2
κ(ρ̃))2

(
1 − ηκ

5

)
, (38)

displayed in Figure 8, illustrates the remaining depen-
dence on κ and ρ̃.



306 The European Physical Journal B

J
(3)
3 (p;κ; ρ) =

1

κZ2
κ(2π)2

1

(1 + m̂2
κ)2

∫ 1

0

dq̄q̄2

∫ 1

−1

d(cos γ)

× (2 − η + ηq̄2)

Θ(1−q̄2−p̄2+2q̄p̄ cos γ)+(q̄2+p̄2 − 2q̄p̄ cos γ)Θ(q̄2+p̄2−2q̄p̄ cos γ−1)+m̂2
κ

.

(39)

a) p̄ > 2, m̂2
κ < 0.

J
(3)
3 (p;κ; ρ̃) =

1

κZ2
κ(2π)2

1

(1 + m̂2
κ)2

{
2 +

η

2

(
−5

3
+ p̄2 − 3m̂2

κ

)

+
1

2p̄

[
−1 +

η

4
+
(
p̄ +

√
−m̂2

κ

)2
(

1 − η

2
+

η

4

(
p̄ +

√
−m̂2

κ

)2
)]

log

(
p̄ − 1 +

√−m̂2
κ

p̄ + 1 +
√−m̂2

κ

)

+
1

2p̄

[
−1 +

η

4
+
(
p̄ −

√
−m̂2

κ

)2
(

1 − η

2
+

η

4

(
p̄ −

√
−m̂2

κ

)2
)]

log

(
p̄ − 1 −√−m̂2

κ

p̄ + 1 −√−m̂2
κ

)}

=
1

κZ2
κ(2π)2

1

(1 + m̂2
κ)2

{
4

p̄2

(
1

3
− η

15

)
+

4

p̄4

(
1

15
− η

105
− m̂2

κ

3
+

ηm̂2
κ

15

)
+ O(1/(p̄6))

}
. (40)

b) p̄ ≤ 2, m̂2
κ < 0.

J
(3)
3 (p; κ; ρ̃) =

1

κZ2
κ(2π)2

1

(1 + m̂2
κ)2

{
−1 +

η

4
+

ηm̂2
κ

4
+ p̄

(
3

2
− η

8
− 7ηm̂2

κ

8

)
− 3η

4
p̄2

+
25η

48
p̄3 +

1

1 + m̂2
κ

(
4

3
− 4η

15
− p̄ +

η

3
p̄2 +

(
1

12
− η

6

)
p̄3 +

η

120
p̄5

)

+
1

2p̄

[
1 − η

4
−
(
p̄ +

√
−m̂2

κ

)2
(

1 − η

2
+

η

4

(
p̄ +

√
−m̂2

κ

)2
)]

log

(
p̄ + 1 +

√−m̂2
κ

1 +
√−m̂2

κ

)

+
1

2p̄

[
1 − η

4
−
(
p̄ −

√
−m̂2

κ

)2
(

1 − η

2
+

η

4

(
p̄ −

√
−m̂2

κ

)2
)]

log

(
p̄ + 1 −√−m̂2

κ

1 −√−m̂2
κ

)}

=
1

κZ2
κ(2π)2

1

(1 + m̂2
κ)2

{
4

3(1 + m̂2
κ)

(
1 − η

5

)
− 2

3(1 + m̂2
κ)2

p̄2

+
2 + η − 2m̂2

κ + ηm̂2
κ

6(1 + m̂2
κ)3

p̄3 − 2(1 + η − 5m̂2
κ + ηm̂2

κ)

15(1 + m̂2
κ)4

p̄4 + O(p̄5)

}
. (41)

c) p̄ > 2, m2
κ ≥ 0.

J
(3)
3 (p; κ; ρ̃) =

1

κZ2
κ(2π)2

1

(1 + m̂2
κ)2

{
2 +

η

2

(
−5

3
+ p̄2 − 3m̂2

κ

)

+
1

p̄

[(
−1 +

η

4
+ (p̄2 − m̂2

κ)
(
1 − η

2
+

η

4
(p̄2 − m̂2

κ)
)
− ηm̂2

κp̄2
) 1

2
log

(
(p̄ − 1)2 + m̂2

κ

(p̄ + 1)2 + m̂2
κ

)

−2m̂κp̄
(
1 − η

2
+

η

2
(p̄2 − m̂2

κ)
)(

Arctan

(
m̂κ

p̄ − 1

)
− Arctan

(
m̂κ

p̄ + 1

))]}

=
1

κZ2
κ(2π)2

1

(1 + m̂2
κ)2

{
4

p̄2

(
1

3
− η

15

)

+
1

105 p̄4

(
7 − 35m̂2

κ + η(−1 + 7m̂2
κ)
)

+ O(1/(p̄6))

}
(42)

Consider next J
(3)
3 (p; κ; ρ), defined in equation (10).

Using the LPA’ propagators of equations (17) and (22) one
can calculate it analytically. One first makes the changes of
variables p̄ = p/κ, q̄ = q/κ and cos γ = p.q/p q, and then
perform the integral over the remaining angular variables.
One gets then

See equation (39) above.

To perform the integral over cos γ one needs to consider
the various domains defined by the Θ functions. It is then

convenient to separate the calculation in two different re-
gions: p̄ > 2 and p̄ ≤ 2, and this for the two possible
signs of m̂2

κ (see also [19]). The calculation is then done
by first integrating over cos γ; the remaining integration
over q̄ can be done by making first an integration by parts
to get a rational function, that is then decomposed into
simple fractions. One finally gets (the dependence on ρ̃ is
entirely contained in m̂κ(ρ̃) and is not written out):

See equations (40)–(42) above.
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J
(3)
3 (p;κ; ρ̃) =

1

κZ2
κ(2π)2(1 + m̂2

κ)2

{
−1 +

η

4
+

ηm̂2
κ

4
+ p̄

(
3

2
− η

8
− 7ηm̂2

κ

8

)
− 3ηp̄2

4

+
25ηp̄3

48
+

1

1 + m̂2
κ

(
4

3
− 4η

15
− p̄ +

ηp̄2

3
+

p̄3

12
− ηp̄3

6
+

ηp̄5

120

)

+
1

p̄

[(
1 − η

4
− (p̄2 − m̂2

κ)
(
1 − η

2
+

η

4
(p̄2 − m̂2

κ)
)

+ ηm̂2
κp̄2
) 1

2
log

(
(p̄ + 1)2 + m̂2

κ

1 + m̂2
κ

)

+ 2m̂κp̄
(
1 − η

2
+

η

2
(p̄2 − m̂2

κ)
)(

Arctan

(
m̂κ

p̄ + 1

)
− Arctan (m̂κ)

)]}

=
1

κZ2
κ(2π)2(1 + m̂2

κ)2

{
4

3(1 + m̂2
κ)

(
1 − η

5

)
− 2

3(1 + m̂2
κ)2

p̄2

+
2 + η − 2m̂2

κ + ηm̂2
κ

6(1 + m̂2
κ)3

p̄3 − 2(1 + η − 5m̂2
κ + ηm̂2

κ)

15(1 + m̂2
κ)4

p̄4 + O(p̄5)

}
. (43)
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Fig. 9. The function J
(3)
3 (κ; p)/I

(3)
3 (κ) for ρ̃ = 0 (top) and

ρ̃ = 6 (bottom), as a function of (p/κ), for different values of
κ/u.

d) p̄ ≤ 2, m2
κ ≥ 0.

See equation (43) above.

The function J
(3)
3 (p; κ; ρ)/J

(3)
3 (p = 0; κ; ρ) is displayed in

Figure 9 for the two values ρ̃ = 0, and ρ̃ = 6. One sees
that in both cases the p-dependence is concentrated in the
region p ∼ κ: J

(3)
3 (p; κ; ρ) is independent of p when p <∼ κ,

and it vanishes when p >∼ κ, a property that has been
exploited in [19, 20]. For ρ̃ = 0, J

(3)
3 (κ; p)/J

(3)
3 (κ; p = 0) is

essentially a function of p/κ only. For ρ̃ = 6 some residual
dependence on κ remains.

Appendix C: Ultraviolet behavior
of the self-energy

In this appendix we study the behavior of the self-energy
Σ(p) for p � u. We show that the solution of equa-
tion (16) reproduces the result of 2-loop perturbation the-
ory, namely Σ(p) = u2/(96π2) log(p/u), albeit with a co-
efficient in front of the logarithmic that differs by 8%.

Consider first the exact flow equation for the 2-point
function, equation (5), in vanishing external field (in this
appendix ρ = 0 throughout). At order 0-loop (indicated
by the superscript [0]), this is simply:

∂κΓ (2)[0]
κ (p) = 0. (44)

This equation has the solution

Γ (2)[0]
κ (p) = p2, (45)

where we used the initial condition at κ = Λ that one
deduces from equation (1), and adjusted the bare mass
r to be at criticality (Σκ=0(p = 0; ρ = 0) = 0, yielding
r[0] = 0).

To go to 1-loop, one uses, in the r.h.s. of equation (5),
the 0-loop expressions for both the propagator, G0(κ; p) =
1/(p2 + Rκ(p)), and the 4-point function Γ

(4)[0]
κ (pi) = u.

One gets

∂κΓ (2)[1]
κ (p) = −u

2

∫
ddq

(2π)d

∂κRκ(q)
(q2 + Rκ(q))2

=
u

2
∂κ

∫
ddq

(2π)d

1
q2 + Rκ(q)

·
(46)

The integration is immediate; by imposing criticality and
the initial condition at κ = Λ, one obtains

Γ (2)[1]
κ (p) − p2 =

u

2

∫
ddq

(2π)d

{
1

q2 + Rκ(q)
− 1

q2

}
, (47)

which is in fact independent of the momentum p.
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The 1-loop expression for the 4-point function, which
will be needed shortly, is obtained similarly:

∂κΓ (4)[1]
κ (p,−p, l,−l) = u2

∫
ddq

(2π)d
∂κRκ(q)G2

0(κ; q)

× {G0(κ; q) + G0(κ; p + l + q) + G0(κ; p − l + q)} ,

(48)

which can be integrated easily to give

Γ (4)[1]
κ (p,−p, l,−l) = u

u2

2

∫
ddq

(2π)d
G0(κ; q)

× {G0(κ; q) + G0(κ; p + l + q) + G0(κ; p − l + q)} ,

(49)

where we imposed the initial condition

Γ
(4)
κ=Λ(p,−p, l,−l, ρ = 0) = u

(the integrand in Eq. (49) should, for finite Λ, be sub-
tracted from its value at κ = Λ in order to satisfy this
initial condition; the corresponding contribution, however,
vanishes in the limit Λ → ∞, and we assume here that Λ
is large enough so that it can be neglected.)

Going now to 2-loop, one puts in the r.h.s. of equa-
tion (5) the 1-loop expressions of both the propagator and
the 4-point functions. Since we are interested only in the
momentum dependence of the 2-point function, we con-
sider only the terms in the flow equation that depend on
p, i.e., Σκ(p) = Γ

(2)
κ (p)−Γ

(2)
κ (0)−p2. Since the momentum

dependent terms originate entirely from the contribution
of order u2 in Γ (4)[1], we can use G0 as propagator. We
have therefore

∂κΣ[2]
κ (p) =

u2

2

∫
ddl

(2π)d
∂κRκ(l)G2

0(κ; l)

×
∫

ddq

(2π)d
G0(κ; q)(G0(κ; p + l + q)−G0(κ; l + q)).

(50)

This expression can also be integrated to give

Σ[2]
κ (p) = −u2

6

∫
ddl

(2π)d

∫
ddq

(2π)d
G0(κ; l)G0(κ; q)

× (G0(κ; p + l + q) − G0(κ; l + q)). (51)

At this point, we need to deal with the fact that the 2-
loop expression for the self-energy is IR divergent. And
indeed when κ → 0 at fixed p, the integral in equation (51)
diverges. In order to go around this difficulty, we consider
the derivative ∂p∆Γ

(2)
κ (p)

∂Σ
[2]
κ (p)

∂|p| =
u2

3

∫
ddl

(2π)d

∫
ddq

(2π)d
G0(l)G0(q)

× G2
0 (p+l+q)(l+q+p).p̂ (1 + R′

κ(l+p+q)), (52)

where p̂ ≡ p/|p| and R′
κ(q) ≡ ∂q2Rκ(q). The limit κ → 0

can now be taken, and yields

∂Σ
[2]
κ=0(p)
∂|p| =

u2

6

∫
ddq

(2π)d

2q.p̂

q4

∫
ddl

(2π)d

1
l2

1
(l + p − q)2

.

(53)

Performing the integral over l and those over cos θ = p̂.q̂
and |q|, one recovers the well known result (in d = 3):

∂Σ
[2]
κ=0(p)
∂|p| =

1
24

u2

(2π)2

∫ ∞

0

d|q|
|q|

×
∫ π

0

dθ
sin θ cos θ

(p2 + q2 − 2|p||q| cos θ)1/2

=
u2

96π2

1
|p| . (54)

Let us now turn to the perturbative limit of equation (16).
Note that, at both 0- and 1-loop orders, the predictions
of equations (5) and (16) for the self-energy coincide. A
difference arises at 2-loop order since, at the LO of the
approximation scheme, we should insert in equation (50)
Γ

(4)[1]
κ (p,−p, 0, 0) instead of Γ

(4)[1]
κ (p,−p, l,−l) as we did

in the exact calculation, where the expression of Γ (4)[1]

is given in equation (49). That is, the LO flow equation
reads

∂κΣ[2]LO
κ (p) =

u2

2

∫
ddl

(2π)d
∂κRκ(l)G2

0(κ; l)

×
∫

ddq

(2π)d
G0(κ; q)(G0(κ; p + q) − G0(κ; q)). (55)

In contrast to what happens with equation (50), here
the integration over κ can no longer be done analyti-
cally and we have to deal with a third integral. Let us
call κ′ the variable of this integration, and integrate over
t′ = log(κ′/|p|). After making the changes of variables
q → |p|q and l → |p|l, one obtains:

Σ(2)[2]LO
κ (p) = −u2

2
|p|2(d−3)

×
∫ ∞

log κ/|p|
dt

∫
ddl

(2π)d
∂t′Rκ′(l)G2

0(κ; l)

×
∫

ddq

(2π)d
G0(κ; q)(G0(κ; p̂ + q) − G0(κ; q)).

(56)

Now, the derivative with respect to |p| is very simple be-
cause, in d = 3, it only enters in the integration limit. One
has:

∂Σ
(2)[2]LO
12 (p)

∂|p| = − u2

2|p|
∫

d3l

(2π)3
∂tRκ(l)G2

0(κ; l)

×
∫

d3q

(2π)3
G0(κ; q)(G0(κ; p̂ + q) − G0(q)), (57)
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where t = log(κ/|p|). In can be verified that the first term,
i.e., that containing p̂, vanishes when κ � |p|. In this limit:

∂Σ
[2]LO
κ=0 (p)
∂|p| =

1
2

u2

|p|
∫

d3l

(2π)3
∂tRκ(l)G2

0(κ; l)

×
∫

d3q

(2π)3
G2

0(κ; q)

=
u2

9π4

1
|p| . (58)

Comparing equations (54) and (58) one sees that they
both predict a logarithmic behavior for the self-energy,
the ratio of their respective coefficients being:

1/(9π4)
1/(96π2)

� 1.08. (59)
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